Publication Beamlines Strategic Pillar
Wang, Shaofeng; Zeng, Xiangfeng; Lin, Jinru; Yuan, Zidan; Qu, Shan et al. (2021). Molecular Structure of Molybdate Adsorption on Goethite at pH 5–8: A Combined DFT + U, EXAFS, and Ab Initio XANES Study. Journal of Physical Chemistry C 125(40) , 22052-22063. 10.1021/acs.jpcc.1c05497. HXMA Environment
Vessey, Colton J.; Raudsepp, Maija J.; Patel, Avni S.; Wilson, Sasha; Harrison, Anna L. et al. (2024). Influence of Iron Substitution and Solution Composition on Brucite Carbonation. Environmental Science & Technology . 10.1021/acs.est.3c08708. HXMA Environment
Sumaila; Samira (2018). Mineralogical and geochemical characterisation of cores from an in situ recovery uranium mine. Supervisor: McBeth, Joyce M.; Hendry, James. Saskatchewan, Canada: University of Saskatchewan. http://hdl.handle.net/10388/8342. CMCF-BM, HXMA, SGM, SXRMB, VESPERS Environment
Skierszkan, Elliott K.; Robertson, Jared M.; Lindsay, Matthew B. J.; Stockwell, Justin S.; Dockrey, John W. et al. (2019). Tracing Molybdenum Attenuation in Mining Environments Using Molybdenum Stable Isotopes. Environmental Science & Technology 53(10) , 5678-5686. 10.1021/acs.est.9b00766. HXMA Environment
Skierszkan, E.K.; Mayer, K.U.; Weis, D.; Roberston, J.; Beckie, R.D. et al. (2019). Molybdenum stable isotope fractionation during the precipitation of powellite (CaMoO4) and wulfenite (PbMoO4). Geochimica et Cosmochimica Acta 244, 383-402. 10.1016/j.gca.2018.09.030. HXMA Environment
Schoepfer, Valerie A.; Qin, Kaixuan; Robertson, Jared M.; Das, Soumya; Lindsay, Matthew B. J. et al. (2020). Structural Incorporation of Sorbed Molybdate during Iron(II)-Induced Transformation of Ferrihydrite and Goethite under Advective Flow Conditions. ACS Earth and Space Chemistry 4(7) , 1114-1126. 10.1021/acsearthspacechem.0c00099. HXMA Environment
Robertson, Jared M.; Nesbitt, Jake A.; Lindsay, Matthew B.J. (2019). Aqueous- and solid-phase molybdenum geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada. Chemosphere 217, 715-723. 10.1016/j.chemosphere.2018.11.064. HXMA Environment
Rippner, Devin A.; Margenot, Andrew J.; Fakra, Sirine C.; Aguilera, L. Andrea; Li, Chongyang et al. (2021). Microbial response to copper oxide nanoparticles in soils is controlled by land use rather than copper fate. Environmental Science: Nano 8(12) , 3560-3576. 10.1039/d1en00656h. HXMA, VESPERS Environment
Rahman, Noabur; Schoenau, Jeff (2022). Bioavailability, Speciation, and Crop Responses to Copper, Zinc, and Boron Fertilization in South-Central Saskatchewan Soil. Agronomy 12(8) , 1837. 10.3390/agronomy12081837. HXMA, VLS-PGM Environment
Rahman, Noabur; Schoenau, Jeff (2020). Response of wheat, pea, and canola to micronutrient fertilization on five contrasting prairie soils. Scientific Reports 10(1) . 10.1038/s41598-020-75911-y. HXMA, VLS-PGM Environment
Rahman, Noabur; Peak, Derek; Schoenau, Jeff (2022). Antagonistic effect of copper and zinc in fertilization of spring wheat under low soil phosphorus conditions. Canadian Journal of Soil Science 102(3) . 10.1139/cjss-2021-0189. HXMA, VLS-PGM Environment
Parigi, Roberta; Chen, Ning; Reid, Joel W.; Ptacek, Carol J.; Blowes, David W. et al. (2022). Nickel isotope fractionation during precipitation of Ni secondary minerals and synchrotron-based analysis of the precipitates. Geochimica et Cosmochimica Acta 317, 91-105. 10.1016/j.gca.2021.10.027. HXMA Environment
Parigi, Roberta; Chen, Ning; Liu, Peng; Ptacek, Carol J.; Blowes, David W. et al. (2022). Mechanisms of Ni removal from contaminated groundwater by calcite using X-ray absorption spectroscopy and Ni isotope measurements. Journal of Hazardous Materials 440, 129679. 10.1016/j.jhazmat.2022.129679. CLS-APS, HXMA Environment
Parigi, Roberta (2021). Nickel Isotope Geochemistry in Mine Waste System. Supervisor: Blowes, David. ON, Canada: University of Waterloo. http://hdl.handle.net/10012/16641. CLS-APS, CMCF-BM, HXMA, SXRMB Environment
Pan, Yuanming; Li, Dien; Feng, Renfei; Wiens, Eli; Chen, Ning et al. (2021). Uranyl binding mechanism in microcrystalline silicas: A potential missing link for uranium mineralization by direct uranyl co-precipitation and environmental implications. Geochimica et Cosmochimica Acta 292, 518-531. 10.1016/j.gca.2020.10.017. BIOXAS-SPECTROSCOPY, HXMA, VESPERS Environment